برآورد ضریب زبری بستر کانالهای خاکی با استفاده از روشهای شبکههای عصبی مصنوعی و سیستمهای استنباط فازی عصبی-تطبیقی
Authors
Abstract:
برآورد ضریب زبری در طراحی کانالهای خاکی از اهمیت زیادی برخوردارمی باشد. این مساله حتی در مدل سازی عددی پدیده انتقال رسوب دارای اهمیت به سزایی میباشد. به همین منظور، تاکنون روش های تجربی زیادی برای تخمین زبری در کانال ها ارائه شده است که غالبا دارای خطای زیادی در تخمین پارامتر مورد نظر می باشند. بنابراین، در این مقاله با استفاده از روشهای ابزار محاسبات نرم مبتنی بر شبکههای عصبی مصنوعی و سیستم استنباط فازی عصبی به ارائه مدلهایی جهت تخمین میزان ضریب زبری در کانالهای خاکی پرداخته میشود. پس از شبیهسازی و توسعه این مدلها نتایج نشان میدهد که دقت روشهای مذکور بالاتر از روابط تجربی متداول برای محاسبه این ضریب میباشد. همچنین، آنالیز حساسیت خطای تخمین در برابر حذف پارامترهای مختلف موثر بدست آمده از روش آنالیز ابعادی باکینگهام بر ضریب مذکور نشان میدهد پارامترهای دیگری مانند عدد رینولدز برشی و پارامتر عمق بیبعد آب در کانال نیز در میزان ضریب زبری بستر کانالهای خاکی موثر است که در روابط تجربی ارائه شده این ضریب نادیده گرفته میشد. همچنین نتیجه گرفته شد که مدلهای توسعه داده شده میتوانند به عنوان گزینهای مناسب جهت تخمین زبری کانالها خاکی باشند. این مساله با توجه به دامنه وسیع مکانیزم انتقال رسوب بیشتر اهمیت پیدا میکند.
similar resources
پیشبینی ضریب زبری کانالهای روباز با بستر فرسایشی با استفاده از سیستمهای عصبی مصنوعی
در هیدرولیک رودخانهها، بستر متحرک بوده و مقاومت در برابر جریان یا ضریب زبری متغیر است. در این حالت، نمیتوان رابطه مقاومت را به طور مستقیم و بدون آگاهی از نحوة تغییر ضریب مقاومت در شرایط مختلف جریان و رسوب، به کار برد. با توجه به تأثیر پارامترهای متعدد در ضریب زبری، تاکنون رابطه قطعی جهت محاسبه ضریب زبری ارائه نشده است. در این تحقیق، ابتدا آزمایشات لازم در کانالی در حالت فرم بستر دون متعادل جه...
full textتخمین ضریب رواناب رگبار با استفاده از سیستم استنباط فازی- عصبی تطبیقی (ANFIS) در حوزه آبخیز بار اریه نیشابور
The rainfall-runoff process and flooding are hydrological phenomena that are difficult to study due to the influence of different parameters. So far, different methods and models have been provided to analyze these phenomena. The purpose of this study is evaluation of adaptive neuro-fuzzy inference system (ANFIS) for storm runoff coefficient forecasting. To that end, Barariyeh watershed was cho...
full textتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
full textعملکرد شبکه عصبی مصنوعی و شبکه عصبی فازی- تطبیقی در برآورد غلظت ازن در شهر تهران
در سالهای اخیر آلودگی هوا به عنوان یکی از بزرگ ترین مشکلات زیست محیطی در سطح جهانی مطرح شده است. ازن تروپوسفری یک آلاینده ثانویه است و سبب بروز مشکلات تنفسی و تاثیر حاد بر گیاهان میشود. در این مطالعه به دلیل غیر خطی بودن و پیچیدگی این پدیدههابه مقایسه برآورد غلظت آلاینده ازن با استفاده از شبکه عصبی مصنوعی و شبکه عصبی فازی-تطبیقی پرداخته شد. در پژوهش حاضر از متغیرهای هواشناسی در ...
full textپیشبینی بارش فصلی بر اساس الگوهای سینوپتیکی با استفاده از سیستم استنباط فازی- عصبی تطبیقی((ANFIS
full text
پیش بینی ضریب زبری کانال های روباز با بستر فرسایشی با استفاده از سیستم های عصبی مصنوعی
در هیدرولیک رودخانه ها، بستر متحرک بوده و مقاومت در برابر جریان یا ضریب زبری متغیر است. در این حالت، نمیتوان رابطه مقاومت را به طور مستقیم و بدون آگاهی از نحوة تغییر ضریب مقاومت در شرایط مختلف جریان و رسوب، به کار برد. با توجه به تأثیر پارامترهای متعدد در ضریب زبری، تاکنون رابطه قطعی جهت محاسبه ضریب زبری ارائه نشده است. در این تحقیق، ابتدا آزمایشات لازم در کانالی در حالت فرم بستر دون متعادل جه...
full textMy Resources
Journal title
volume 52 issue 2
pages 16- 16
publication date 2018-10-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023